Thursday, September 16, 2021

What is CURRENT– electric current explained, electricity basics.

What is CURRENT– electric current explained, electricity basics.

An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net flow of electric charge flow through a surface or into a control volume. The moving particles are called charge carriers, which may be one of several particles, depending on the conductor. In electric circuits, the charge carriers are often electrons moving through a wire. In semiconductors, they can be electrons or holes. In an electrolyte, the charge carriers are ions, while in plasma, an ionized gas, they are ions and electrons.

The SI unit of electric current is the ampere, or amp, which is the flow of electric charge across a surface at the rate of one coulomb per second. The ampere (symbol: A) is an SI base unit. Electric currents are measured using a device called an ammeter.

Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers. In ordinary conductors, they cause Joule heating, which creates light in incandescent light bulbs. Time-varying currents emit electromagnetic waves, which are used in telecommunications to broadcast information.

Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:

V=IR

Where I is the current through the conductor in units of amperes, V is the potential difference measured across the conductor in units of volts, and R is the resistance of the conductor in units of ohms. More specifically, Ohm's law states that the R in this relation is constant, independent of the current.


Electric current can be either direct or alternating. Direct current (DC) flows in the same direction at all points in time, although the instantaneous magnitude of the current might vary. In an alternating current (AC), the flow of charge carriers reverses direction periodically. The number of complete AC cycles per second is the frequency, which is measured in hertz. An example of pure DC is the current produced by an electrochemical cell. The output of a power-supply rectifier, prior to filtering, is an example of pulsating DC. The output of common utility outlets is AC.


The current per unit cross-sectional area is known as current density. It is expressed in amperes per square meter, amperes per square centimetre, or amperes per square millimetre. Current density can also be expressed in amperes per circular mil. In general, the greater the current in a conductor, the higher the current density. However, in some situations, current density varies in different parts of an electrical conductor. A classic example is the so-called skin effect, in which current density is high near the outer surface of a conductor, and low near the centre. This effect occurs with alternating currents at high frequencies. Another example is the current inside an active electronic component such as a field-effect transistor (FET).


An electric current always produces a magnetic field. The stronger the current, the more intense the magnetic field. A pulsating DC, or an AC, characteristically produces an electromagnetic field. This is the principle by which wireless signal propagation occurs.




Get information like this
https://t.me/joinchat/jpqj3jQLN51kYTk9
Join Telegram  Group.
https://chat.whatsapp.com/HHC5m0Jz3Ue1E8ilgta0YT
Join WhatsApp  Group
Thanks.

No comments:

Post a Comment

முனைவர் படிப்பு - UGC புதிய அறிவிப்பு.

முனைவர் படிப்பு - UGC புதிய அறிவிப்பு. இது போன்ற தகவல் பெற https://t.me/joinchat/Ex0_TNk_10WnjXOc இந்த Telegram  குழுவில் இணையவும். https://...